Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Science ; 378(6622): eabo2523, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2088384

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for vaccines that not only prevent disease but also prevent transmission. Parenteral vaccines induce robust systemic immunity but poor immunity at the respiratory mucosa. We developed a vaccine strategy that we call "prime and spike," which leverages existing immunity generated by primary vaccination (prime) to elicit mucosal immune memory within the respiratory tract by using unadjuvanted intranasal spike boosters (spike). We show that prime and spike induces robust resident memory B and T cell responses, induces immunoglobulin A at the respiratory mucosa, boosts systemic immunity, and completely protects mice with partial immunity from lethal SARS-CoV-2 infection. Using divergent spike proteins, prime and spike enables the induction of cross-reactive immunity against sarbecoviruses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunologic Memory , Memory B Cells , Memory T Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , Administration, Intranasal , Antibodies, Viral , COVID-19/prevention & control , COVID-19/transmission , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Immunoglobulin A , Memory B Cells/immunology , Memory T Cells/immunology
2.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1885669

ABSTRACT

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Subject(s)
COVID-19 , Influenza, Human , Neoplasms , Animals , Humans , Influenza, Human/pathology , Mice , Microglia/pathology , Myelin Sheath , Neoplasms/pathology , SARS-CoV-2
3.
Nature ; 606(7914): 585-593, 2022 06.
Article in English | MEDLINE | ID: covidwho-1815563

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
4.
Nat Biotechnol ; 40(5): 681-691, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713197

ABSTRACT

As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16hiCD66blo neutrophil and IFN-γ+ granzyme B+ Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.


Subject(s)
COVID-19 , Single-Cell Analysis , Chromatin , Humans , Single-Cell Analysis/methods , Transposases , Exome Sequencing
5.
Sci Immunol ; 7(68): eabl5652, 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1673340

ABSTRACT

T follicular helper (TFH) cells are the conventional drivers of protective, germinal center (GC)­based antiviral antibody responses. However, loss of TFH cells and GCs has been observed in patients with severe COVID-19. As T cell­B cell interactions and immunoglobulin class switching still occur in these patients, noncanonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both TFH-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Although TFH-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. We found by epitope mapping and B cell receptor sequencing that TFH cells focused the B cell response, and therefore, in the absence of TFH cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Amino Acid Sequence , Animals , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Germinal Center/immunology , Humans , Lymphocyte Activation/immunology , Mice , T-Lymphocytes, Helper-Inducer
6.
J Infect Dis ; 225(3): 374-384, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1672205

ABSTRACT

BACKGROUND: The underlying immunologic deficiencies enabling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection are currently unknown. We describe deep longitudinal immune profiling of a transplant recipient hospitalized twice for coronavirus disease 2019 (COVID-19). METHODS: A 66-year-old male renal transplant recipient was hospitalized with COVID-19 March 2020 then readmitted to the hospital with COVID-19 233 days after initial diagnosis. Virologic and immunologic investigations were performed on samples from the primary and secondary infections. RESULTS: Whole viral genome sequencing and phylogenetic analysis revealed that viruses causing both infections were caused by distinct genetic lineages without evidence of immune escape mutations. Longitudinal comparison of cellular and humoral responses during primary SARS-CoV-2 infection revealed that this patient responded to the primary infection with low neutralization titer anti-SARS-CoV-2 antibodies that were likely present at the time of reinfection. CONCLUSIONS: The development of neutralizing antibodies and humoral memory responses in this patient failed to confer protection against reinfection, suggesting that they were below a neutralizing titer threshold or that additional factors may be required for efficient prevention of SARS-CoV-2 reinfection. Development of poorly neutralizing antibodies may have been due to profound and relatively specific reduction in naive CD4 T-cell pools. Seropositivity alone may not be a perfect correlate of protection in immunocompromised patients.


Subject(s)
COVID-19 , Reinfection , Transplant Recipients , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Male , Organ Transplantation , Phylogeny , Reinfection/immunology , Reinfection/virology , SARS-CoV-2/genetics
7.
Nat Biotechnol ; 40(6): 906-920, 2022 06.
Article in English | MEDLINE | ID: covidwho-1585827

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease that can present as an uncontrolled, hyperactive immune response, causing severe immunological injury. Existing rodent models do not recapitulate the sustained immunopathology of patients with severe disease. Here we describe a humanized mouse model of COVID-19 that uses adeno-associated virus to deliver human ACE2 to the lungs of humanized MISTRG6 mice. This model recapitulates innate and adaptive human immune responses to severe acute respiratory syndrome coronavirus 2 infection up to 28 days after infection, with key features of chronic COVID-19, including weight loss, persistent viral RNA, lung pathology with fibrosis, a human inflammatory macrophage response, a persistent interferon-stimulated gene signature and T cell lymphopenia. We used this model to study two therapeutics on immunopathology, patient-derived antibodies and steroids and found that the same inflammatory macrophages crucial to containing early infection later drove immunopathology. This model will enable evaluation of COVID-19 disease mechanisms and treatments.


Subject(s)
COVID-19 , Animals , Antiviral Agents , Disease Models, Animal , Humans , Interferons , Lung/pathology , Mice
8.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: covidwho-1510855

ABSTRACT

As SARS-CoV-2 continues to cause morbidity and mortality around the world, there is an urgent need for the development of effective medical countermeasures. Here, we assessed the antiviral capacity of a minimal RIG-I agonist, stem-loop RNA 14 (SLR14), in viral control, disease prevention, post-infection therapy, and cross-variant protection in mouse models of SARS-CoV-2 infection. A single dose of SLR14 prevented viral infection in the lower respiratory tract and development of severe disease in a type I interferon (IFN-I)-dependent manner. SLR14 demonstrated remarkable prophylactic protective capacity against lethal SARS-CoV-2 infection and retained considerable efficacy as a therapeutic agent. In immunodeficient mice carrying chronic SARS-CoV-2 infection, SLR14 elicited near-sterilizing innate immunity in the absence of the adaptive immune system. In the context of infection with variants of concern (VOCs), SLR14 conferred broad protection against emerging VOCs. These findings demonstrate the therapeutic potential of SLR14 as a host-directed, broad-spectrum antiviral for early post-exposure treatment and treatment of chronically infected immunosuppressed patients.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , RNA/metabolism , SARS-CoV-2/drug effects , Animals , COVID-19/metabolism , Disease Models, Animal , Immunity, Innate/drug effects , Interferon Type I/metabolism , Mice , Mice, Inbred BALB C
9.
Sci Immunol ; 6(64): eabl4509, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1462897

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 160 million infections and more than 3 million deaths worldwide. Although effective vaccines are currently being deployed, the adaptive immune determinants that promote viral clearance and confer protection remain poorly defined. Using mouse models of SARS-CoV-2, we demonstrate that both humoral and cellular adaptive immunity contribute to viral clearance in the setting of primary infection. Furthermore, we find that either convalescent mice or mice that receive mRNA vaccination are protected from both homologous infection and infection with a variant of concern, B.1.351. In addition, we find that this protection is largely mediated by antibody response and not cellular immunity. These results highlight the in vivo protective capacity of antibodies generated to both vaccine and natural infection.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2/immunology , Animals , COVID-19/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Vero Cells
11.
Res Sq ; 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1389924

ABSTRACT

The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal-transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection 7 months after primary infection. To elucidate the immunological mechanisms responsible for reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses that was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we identified the development of neutralizing antibodies and humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation.

12.
Nature ; 588(7837): 315-320, 2020 12.
Article in English | MEDLINE | ID: covidwho-1337122

ABSTRACT

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Sex Characteristics , T-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Chemokines/blood , Chemokines/immunology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Lymphocyte Activation , Male , Monocytes/immunology , Phenotype , Prognosis , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , Viral Load
13.
Sci Signal ; 14(690)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299216

ABSTRACT

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA-to-kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.


Subject(s)
COVID-19/immunology , Kynurenic Acid/immunology , SARS-CoV-2 , Adult , Aged , COVID-19/blood , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/blood , Cytokines/immunology , Female , Humans , Kynurenic Acid/blood , Logistic Models , Male , Metabolic Networks and Pathways/immunology , Metabolomics , Middle Aged , Multivariate Analysis , Severity of Illness Index , Sex Factors , Signal Transduction/immunology , Tryptophan/metabolism
15.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Article in English | MEDLINE | ID: covidwho-1282318

ABSTRACT

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biological Assay/methods , COVID-19/virology , Receptors, Coronavirus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/blood , Cell Fusion , HEK293 Cells , Humans , Receptors, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Transfection , Virus Attachment
16.
Nature ; 595(7866): 283-288, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233713

ABSTRACT

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-6. Although pathological innate immune activation is well-documented in severe disease1, the effect of autoantibodies on disease progression is less well-defined. Here we use a high-throughput autoantibody discovery technique known as rapid extracellular antigen profiling7 to screen a cohort of 194 individuals infected with SARS-CoV-2, comprising 172 patients with COVID-19 and 22 healthcare workers with mild disease or asymptomatic infection, for autoantibodies against 2,770 extracellular and secreted proteins (members of the exoproteome). We found that patients with COVID-19 exhibit marked increases in autoantibody reactivities as compared to uninfected individuals, and show a high prevalence of autoantibodies against immunomodulatory proteins (including cytokines, chemokines, complement components and cell-surface proteins). We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signalling and by altering peripheral immune cell composition, and found that mouse surrogates of these autoantibodies increase disease severity in a mouse model of SARS-CoV-2 infection. Our analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics. Our findings suggest a pathological role for exoproteome-directed autoantibodies in COVID-19, with diverse effects on immune functionality and associations with clinical outcomes.


Subject(s)
Autoantibodies/analysis , Autoantibodies/immunology , COVID-19/immunology , COVID-19/metabolism , Proteome/immunology , Proteome/metabolism , Animals , Antigens, Surface/immunology , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Complement System Proteins/immunology , Cytokines/immunology , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Organ Specificity/immunology
17.
Nat Med ; 27(7): 1178-1186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1217708

ABSTRACT

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Carrier State/immunology , Female , Humans , Immunity, Humoral , Kinetics , Length of Stay/statistics & numerical data , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
18.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1213573

ABSTRACT

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

19.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: covidwho-1024074

ABSTRACT

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Blocking/chemistry , COVID-19 , Cerebral Cortex , Neurons , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/virology , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Neurons/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
20.
PLoS Biol ; 18(10): e3000867, 2020 10.
Article in English | MEDLINE | ID: covidwho-901993

ABSTRACT

The current quantitative reverse transcription PCR (RT-qPCR) assay recommended for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the United States requires analysis of 3 genomic targets per sample: 2 viral and 1 host. To simplify testing and reduce the volume of required reagents, we devised a multiplex RT-qPCR assay to detect SARS-CoV-2 in a single reaction. We used existing N1, N2, and RP primer and probe sets by the Centers for Disease Control and Prevention, but substituted fluorophores to allow multiplexing of the assay. The cycle threshold (Ct) values of our multiplex RT-qPCR were comparable to those obtained by the single assay adapted for research purposes. Low copy numbers (≥500 copies/reaction) of SARS-CoV-2 RNA were consistently detected by the multiplex RT-qPCR. Our novel multiplex RT-qPCR improves upon current single diagnostics by saving reagents, costs, time, and labor.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Multiplex Polymerase Chain Reaction/standards , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Clinical Laboratory Techniques/standards , Coronavirus Infections/virology , DNA Primers/standards , HEK293 Cells , Humans , Limit of Detection , Nasopharynx/virology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL